This article was downloaded by: On: *16 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Zhang, Yan-Qiu and Zhang, De-Chun(1996) 'Crystal chemistry study on nitrobenzenes Part 1. Molecular conformation and packing', Journal of Energetic Materials, 14: 3, 271 – 287 To link to this Article: DOI: 10.1080/07370659608216068 URL: http://dx.doi.org/10.1080/07370659608216068

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CRYSTAL CHEMISTRY STUDY ON NITROBENZENES [§] PART 1. MOLECULAR CONFORMATION AND PACKING

Yan-Qiu ZHANG and De-Chun ZHANG*

Department of Chemistry, Suzhou University, Suzhou 215006 The People's Republic of China

ABSTRACT

Based on 79 crystal structures of nitrobenzenes, the geometry of the benzene ring and the conformation of the nitro group were examined. The bond lengths and the endocyclic angles in the nearly planar benzene ring vary considerably, with the latter being well correlated to the electronic properties of the subtituents. Packing energy was calculated and consistent well with experimental value.

INTRODUCTION

§ Part of this work was done at Max-Planck Institut fuer Kohlenforschung a. d. Ruhr, Germany, on an occasion of a sabbatical leave. Many thanks are due to the local people there.

> Journal of Energetic Materials Vol 14, 271-287 (1996) Published in 1996 by Dowden, Brodman & Devine, Inc.

Nitrobenzenes arc an important class of explosives. Their properties are originated from their internal structures. To the structure-property relationship systematically, a studv search was done on the crystal structures with the following criteria. In the molecule, 1). there is one and only one benzene ring and no other ring. 2). there is at least a NO_2 group directly attached to the benzene ring. 3). there is no other element than C, H, N, O, F, Cl, Br, I. In addition, the structure is full-determined and disorder-free. Structures containing carboxy group and complicated structures were intentionally excluded so that the attention could be focused on the NO_2 group and its functions on molecular packing. The database contains 79 structures, in which there are a total of 175 NO_2 groups. The database is not inclusive, but it is believed to be large enough to show the characteristics concerned in this communication.

GEOMETRY OF BENZENE RING

The geometrical calculation was summerized in table 1. As shown by the table the benzene ring is essentially planar. The average and maximum deviations from the ring plane for the ring atoms are 0.01Å and 0.09Å, respectively. The sum of the six internal angles is always equal to 360° within 2°, showing the substitution of NO₂ group has no signicant effect on the pla-

Table	1	Geometry	of	Benzene	Ring	in	Nitrobenzenes*
					•		

NO	Groups	5.6	_			_								•
no.	oroups	5.0.	a 1 b	a 2 h	а з њ	α ₄ ⊾	а _Б	α ₆	d ₆₁	d ₁₂	d ₂₃	d ₈₄	đ₄₅	dse
1	NMNC	P-1	123	112 114	124	119	119	121	1386	1395	1383	1395	1382	1360
2	NMNCM	Pna21	124	112	126	119	117	122	1350	1432	1358	1393	1396	1379
3	N N	Pbn21	123	116	124	118	120	119	1370	1371	1372	1374	1385	1374
4	N N	P21/n	123	118	118	3 123	118	118	1377	1376	1387	1377	1377	1387
5	N M N M N T	P21/a	127	115	125	115	126	112	1400	1400	1390	1370	1400	1400
6	N M M M N T	P2,/n	126	118	119	118	127	110	1400	1397	1381	1390	1328	1395
7	N N M M M M	P-1	122	122	117	121	121	2 117	1389	1384	1380	1403	1401	1409
8	NNNNN	12/c	1 119 2	122	118	119	118	122	1344	1406	1394	1398	1394	1406
9	N M	Pcab	3 123	117	123	4 117	121	119	1 3 51	1408	1382	1388	1404	1383
10	N	P21/c	125	116	121	121	120	117	1 3 58	1376	1405	1374	1447	1350
11	N M M M M M	P1	1 126	118	121	118	122	115	1405	1355	1365	1435	1411	1384
12	N M N M M M	P21/n	126	113	125	118	120	117	1380	1380	1390	1380	1390	1400
			125	114	125	118	120	118	1400	1380	1380	1390	1400	1390
13	N N N	Pbca	124	116	123	116	124	116	1375	1384	1374	1385	1381	1380
			122	119	123	115	124	117	1385	1374	1365	1363	1391	1385
14	NMN NM	Pbcn	127	114	122	119	122	114	1384	1384	1394	1375	1375	1394
15	NN	P21/c	120	120	119	120	121	119	1376	1384	1376	1381	1374	1387
16	N N N M	Pca21	123 -3	119	121	116	126	114	1408	1372	1375	1415	1364	1390
			126	115	124	116	125	113	1379	1387	1 373	1344	1383	1395
17	NANANV	P21/n	122	117	122	116 -9	123	119 4	1397	<u>1435</u>	<u>1429</u>	<u>1437</u>	<u>1429</u>	1377
18	NANANF	Рс	121	116	123	117	120	123	1379	<u>1441</u>	<u>1440</u>	<u>1424</u>	<u>1425</u>	1382
19	N U B	P21/c	122	121	118	121	122	116	1388	1373	1370	1362	1398	1375
20	NCA	Pna2,	123 1	117 -2	123 2	117 -1	122 0	118 -1	1386	1401	1396	1394	1420	1392
21	NAN	P21/n	123 0	113	123 -1	121 0	119 0	121 0	1378	1429	<u>1426</u>	1389	1377	1378
22	NANAN	Рс	124 -1	116 1	121 -2	116 2	124 -1	119 1	1375	<u>1386</u>	<u>1467</u>	<u>1472</u>	<u>1392</u>	1379

Tab	le 1	(:01	nti	nu	ed)												
NO.	Gro	ups	3			S.G.	α 1	α 2	α 3	α 4	αь	α 6	d61	d12	d23	d₃₄	d45	d ₆₆
							h1	h2	h3	h₄	h5	hs						
23	N		S			P21	121	119	121	117	121	121	1386	1408	1379	1457	1407	1365
• •							1	1	-1	1	1	-1				1050		1070
Z4	NX					PZ_1/n	122	116	121	121	119	120	1395	1400	1405	1372	1379	1370
05							0	0	0	0	0	0	1054	1000	1000		1000	1004
25	N	N	W			PZ ₁ /C	122	118	121	120	120	120	1374	1380	1377	1382	1383	1364
							102	117	100	110	100	110	1975	1200	1971	1200	1204	1966
							123	117	122	119	120	119	13/9	1999	19/1	1990	1594	1300
26	N	N		N	w	D2 / c	122	119	124	116	122	117	1402	1378	1372	1222	1300	1301
20		14			Ħ	121/0	-1	110	124	110	123	117	1402	10/0	10/2	1000	1000	1001
27	NM	N	s			P2./c	121	115	126	115	122	121	1386	1397	1394	1408	1411	1353
2.		•	~			121/0	2	-1	-1	1	-1	1	1000	1007	1004	1400	1411	1000
28	N	ĸ		N	ប	P2./c	123	122	118	121	123	113	1445	1369	1387	1390	1380	1432
						1, -	-1	-3	2	1	-4	4	<u></u>					
							122	120	120	120	125	113	1463	1381	1392	1363	1373	1409
							1	1	-2	-1	3	3						
29	N	F	S			C2/c	120	119	124	114	123	120	1371	1392	1336	1420	1412	1371
							1	-1	0	1	0	-1						
30	N		М	S I	М	P41212	124	119	119	121	119	119	1372	1372	1396	1407	1407	1396
							0	-1	1	0	-1	1						
31	N		U			P21/n	121	121	120	118	122	119	1394	1372	1373	1416	1387	1394
					_		0	0	0	0	0	0						
32	N	N		N]	R	P21/n	123	119	121	119	123	114	<u>1433</u>	1374	1369	1388	1365	1422
							-1	-1	1	1	-3	3						
							122	120	121	118	124	114	1428	1382	1368	1378	1364	1428
9 9	мп	ы	м	в		n 1	102	110	-2	115	3	100	1 402	1410	1400	1950	1 400	1940
55	NU	и	01	D		r-1	123	112	127	110	124	120	1400	1410	1400	1990	1400	1040
34	NY			м		12 10	199	117	121	199	117	191	1200	1200	1201	1970	1201	1270
04				141		r21/C	-2	117	121	122	117	121	1000	1590	1291	15/0	1004	19/0
35	N	٨				Phc2	121	118	110	121	121	117	1373	1387	1300	1 3 9 5	1383	1386
00		~				10021	124	110	110	121	121	117	10/0	1007	1000	1000	1000	1000
36	NМ			U		$P2_{1/c}$	124	114	123	122	117	120	1384	1375	1401	1366	1372	1397
				-		101/0	0	0	100		0	1	1001	10,0	1.01	1000	10.5	1001
37	N	s				P21/c	124	118	118	119	124	117	1370	1378	1443	1443	1371	1382
							1	0	-1	1	0	0						
38	N	N		NY	ľ	P21/c	122	118	123	116	123	116	1397	1380	1365	1377	1393	1385
							-2	3	-1	-2	3	1	_					
39	N		A			P21/n	121	120	120	119	121	119	1387	1392	1370	1412	1405	1374
							-1	1	0	0	1	0						
40	NA					P21/a	121	116	120	126	114	123	1435	1355	1415	1358	1380	1371
							1	-1	0	1	-2	0						
							120	117	122	120	122	119	1441	<u>1421</u>	1398	1389	1365	1372
						DO :	0	-1	1	1	-3	2	1000	1001	1005		1.05	1000
41	N	N	A			PZ ₁ /C	122	118	122	118	120	120	1383	1361	1385	1404	1405	1300
40	N 17		c			D0 (100	0	-1	1177	100	-1	1909	1204	1901	1/10	1 / 0 9	1977
42	n M		3	n	n	r2 ₁ /n	123	118	122	117	122	811	1989	1394	1991	1410	1403	1911
13	NA	N		N		D-1	1 1 2 2	119	122	119	122	119	1450	1/36	1449	1/37	1446	1/35
40	пл	14	n	a 7	1	1 - 1	122 9	011	122		144 0	011	1400	1400	1440	1401	1440	1400
							4	2	U	-3	3	v						

Tab	le	1	(ca	mt	inu	ed)												
NO.	Gre	ou	ps			S .G.	a 1	α2	a s	۵.4	α 5	α 6	d ₆₁	d12	d23	d₃₄	d₄₅	dse
A A	N		N	M		D9 (a	h1 194	h ₂	h3	h₄ 110	h ₅	he 112	1 / 20	1070	1900	1970	1070	1 400
44				R	^	FZ1/C	124	110	122	119	124	113	1429	13/2	1380	1372	13/0	1428
45	N /	A i	NN	I N		$P2_1/c$	123	114	122	120	120	120	1367	1428	1434	1361	1384	1377
						-	2	4	2	1	-3	1	-					
46	N	1	0 A	L I		P21/c	122	119	120	119	121	119	1372	1380	1390	1407	1387	1385
47	м		NT A	N	0	D 2 2 2 2	-]	0	100	-1	10	1	1414	1440	1 495	1 / 177	1 /00	1070
47	a ,				U	F Z ₁ Z ₁ Z ₁	120	-4	122	110	124	119	1414	1442	1435	1437	1420	1373
48	N	l	N O	B		P212121	122	117	123	117	122	117	1397	1385	1371	1396	1375	1397
							0	-1	1	1	0	0						
49	N]	P	N	т	P-1	126	120	118	119	126	110	1404	1372	1376	1371	1382	1394
50	N	,		n		0000	192	117	122	117	100	110	1202	1976	1970	1 400	1400	1970
50	I.	1	N 0	, C		P Z1Z1Z1	123	117	123	117	122	119	1382	1370	1370	1406	140Z	1370
51	N	I	N O)		P212121	123	118	121	119	121	119	1384	1366	1386	1407	1399	1366
							0	0	0	0	0	0						
52	N C) !	N			P2₁nb	122	116	122	120	120	120	1392	<u>1399</u>	1400	1382	1389	1357
50						-	0	0	-1	0	1	-1						
53	N	1	V P			₽Z₁/n	122	117	124	117	121	120	1369	1389	1361	1402	1378	1372
							122	118	122	117	121	119	1376	1360	1373	1393	1388	1380
							õ	1	0	0	1	0	10.0	1000	10.0	1000	1000	1000
54	NP	2	N			P 1	123	116	122	120	121	119	1392	1344	1423	1357	1361	1357
							1	-3	3	0	-2	2						
							123	113	126	117	119	121	1346	1401	1382	1349	1411	1363
55	NO)		Р		$P2_{1/c}$	123	117	122	121		118	1420	1398	1377	1383	1398	1384
				•		121/0	0	2	-1	0	1	-1	1420	1000	10,1	1000	1000	1004
5 6	N	()			P21/n	123	118	120	120	121	117	1371	1376	1385	137 8	1380	1385
							0	0	1	0	0	0						
57	N		0			P21/a	122	119	120	120	120	119	1392	1393	1378	1400	1396	1383
58	NO	,		c		P2 /9	122	117	122	120	120	110	1358	1401	1272	1973	1202	1202
00		·		C		121/a	0	1	122	120	120	0	1000	1401	10/0	10/0	1052	1032
59	NO)				P21/a	121	118	121	122	119	120	1393	1395	1 3 85	1353	1372	1365
							0	0	0	0	0	0						
60	N	Ņ	ł	N	0	Pca2	122	119	122	118	123	115	<u>1407</u>	1412	1 37 3	1367	1376	1355
C 1	M		п			D O /-	0	0	100	0	0	100	1070	1 100	1055	1200	1 410	1007
01	N		P			PZ1/C	122	811	122	119	120	120	13/3	1400	1355	1392	1410	1307
62	NM	N	P	Т		P2,/n	124	112	126	120	116	122	1368	1386	1392	1382	1403	1393
							2	0	-2	1	0	-2						
63	N	N	I	N	Q	Pca21	122	119	122	118	124	116	1384	1389	1369	1378	1360	1388
						-	-1	1	2	-1	1	2				1000	1004	1007
04	N	Ň	I C			Pccn	122	811	122	119	120	-1	1381	1382	1388	1388	1394	1387
65	N	F	3			Pbn2	125	116	119	124	118	117	1402	1382	1394	1373	1364	1405
		-					2	-2	2	-2	2	-2						
66	N	C	c c			141/a	124	118	119	122	119	118	1371	1355	1385	1377	1366	1389
							0	0	1	-1	-1	0						

Tab	le l	(co	ntinu	cd)												
NO.	Gro	ups		S. G.	α 1	a 2	α 3	α 4	α. ₅	a 6	d61	d12	d23	d34	d₄₅	dse
					h,	h2	h3	h₄	h5	ho						
67	N	С		Pna21	123	117	122	119	121	118	1376	1378	1380	1383	1374	1380
					0	0	0	0	0	0						
68	N	N	N.C	P21/a	122	118	123	117	122	118	1402	1376	1386	1388	1372	1392
					0	0	0	0	0	0						
69	NC	NC	N	Pbcn	122	117	123	117	122	120	1378	1371	1407	1407	1371	1378
					0	0	0	0	0	0						
70	NN	C		P212121	120	121	118	122	119	119	1382	1389	1370	1385	1384	1383
					0	0	0	0	0	0						
71	NC	С		P21/c	123	117	121	120	120	119	1377	1389	1390	1375	1374	137 2
					0	1	-1	0	1	-1						
72	NC	N C	C	P21/c	121	118	121	120	119	121	1385	1384	1377	1382	1381	1366
					0	0	0	0	-1	0						
73	N	N	NI	P41212	120	120	120	120	120	120	1394	1372	1394	1394	1372	1394
					0	0	0	0	0	0						
74	NC	CΝ	СС	C2/m	123	118	118	123	118	118	1381	1381	1392	1381	1381	1392
					0	0	0	0	0	0						
75	N	G		P21	123	118	120	120	121	118	1382	1382	1387	1395	1390	1375
					0	0	1	-1	0	1						
76	N	L	0	P21/c	122	118	121	118	121	119	1389	1378	1374	1390	1398	1357
					-1	0	0	0	0	0						
77	N	Z		P212121	123	117	121	121	120	119	1370	1391	1390	1374	1386	1378
					1	2	-1	0	1	0						
78	N	J		P21	123	119	119	121	120	118	1387	1390	1376	1399	1394	1383
					0	1	-1	0	1	-1				•		
79	N	N	NK	P21/n	123	119	122	118	123	116	1390	1369	1361	1372	1368	1392
					1	1	-2	1	1	-2						
Gro	oups	Th	c sub:	stituents	s posi	itior	icd a	it 1-	-6 wi	th s	short	notal	tion	A NH ₂	. B H	Br, C

C1, F F, G CHO, I I, J CN, K CF₃, L COCH₃, M CH₃, N NO₂, O OH, P OCH₃, Q OC_2H_5 , R NHNH₂, S N(CH₃)₂, T C(CH₃)₃, U NHCH₃, V CONH₂, W NF₂, X NHCOCH₃, Y N(NO₂)CH₃, Z N₃ and blank for H atom.

S.G.: Space group.

 $\alpha_{1}(in^{\circ})$: The endocyclic angle (the internal angle in benzene ring) at the position i.

 $h_i(in 0.01\dot{A})$: The deviation of the i-th C atom from the mean benzene plane. $d_{i,i}(in 0.001\dot{A})$: The bond length between the i-th and j-th.C atoms in benzene ring.

	α(°)	h(Å)	d(Å)	a (NO2)	α (OH)	α (NH ₂)	α(CH ₃)
ave.	119.98	0.01	1.388	122.80	117.92	116.87	116.85
t.m.s.	3.03	0.01	0.019	1.81	1.61	1.87	2.68
max.	127	0.09	1.436	127	121	119	122
min.	112	0	1.328	120*	115	113	112
x ••				3.49	3.08	2.78	2.63
samples	528	528	528	175	12	21	39
AA Geour	alaate			D T Con	dandan "	Dalas Ca	ralanaa"

** Group electronegativity, see R.T. Sanderdon, "Polar Covalence", Academic Press, New York(1983)

* The minimum α is 118° in hexanitrobenzene.

narity of the benzene ring.

The bond lengths in the ring vary considerably around the average value 1.388 Å, ranging from 1.328Å to 1.463Å, but there seems no simple relation between the above h_i , d_i and the nature of substituent. However, when an intramolecular hydrogen bonding ring is formed, the lengthening of the involved C-C bond (marked with an underline in the table) is measurable due to the repulsion between groups or tho to each other.

A clear distinction can be seen from the statistics on the endocyclic angles (the internal angle in benzene ring). At the position to which a NO₂ group is attached, the α is always greater than 120°, the value for the standard SP² hybridization, while the counterpart for amine group, either substituted or unsubstituted, is always less than 120°. The a values for other groups are also consistent with the general trend¹ that the α corresponding to an electron-withdrawing substituent is larger than 120° and the α corresponding to an electron-releasing substituent is less than 120°. The angle has a linear relation² with Taft's inductive parameter and Huheey's group electronegativity⁹, while the groups at ortho or meta positions have also secondary effect on it. Conversely, the angle could be used to predict related properties¹. The statistics on the α were listed at the bottom of table 1, showing the linearity approximately (without considering the secondary effect).

CONFORMATION OF NITRO GROUP

Table 2 summerized the main result. Most of symbols in the table could be seen from Fig. 1 with a few exceptions. The Po, denotes the position to which the NO_2 group is attached. When there are more than one molecules in the asymmetric unit, that means, there are conformationally different molecules in the crystal structure, a prime was used to distinguish them.

The d and d are nearly equal to each other when the NO_2 group is not involved in intramolecular hydrogen bonding. However, when it is involved, the length of the involved N-O bond (underlined) is larger than its conuterpart in the same NO_2 group with almost no exception, due to the repulsion between the groups ortho to each other. The difference is small but significant (up to 0.058 Å).

The γ and γ * are close to each other with a few exceptions. The larger difference than 5° between them were found in 8 out of the 175 NO₂ groups. The sum of $\beta + \gamma + \gamma$ * is always equal to 360° within 1°, although each of them varies in a range of about 20°. It indicates that the NO₂ group and its linked C atom are coplanar or nearly so, though considerable out-of-plane deviation from the ring plane for the whole NO₂ group can occur.

The h_N in table 2 is the distance of the N atom in NO₂ to

No.	Groups	D _x C _k	∆Ho	∆Hc P	°0	β	γ	γ.	d	d.	h _N	т	den	Ron
1	NMNC	1,799.768		25.49	1	124	117	119	1223	1205	0	29	1470	
					3	124	118	117	1211	1214	1	80	1471	
2	NMNCM	1.566.718		28.29	1	128	116	115	1156	1168	5	38	1501	
					3	125	117	118	1212	1185	2	86	1483	
3	N N	1.574.728	21.0	23.95	1	125	117	118	1244	1197	0	12	1483	
					3	127	117	116	1214	1227	-2	16	1486	
4	N N	1.617.748	23.0	24.78	1	125	118	118	1220	1218	0	10	1478	
					4	1 2 5	118	118	1220	1218	0	10	1478	
5	ΝΜΝΜΝΤ	1.383 .710		33.22	1	125	117	118	1218	1220	9	80	1479	
					3	123	119	118	1202	1200	7	84	1472	
					5	124	118	117	1220	1228	6	78	1476	
6	ммммит	1.265.707		29.81	1	125	118	117	1213	1222	-7	80	1481	
					5	124	118	117	1224	1218	-5	80	1477	
7	NNMMMM	1.375.724		30.30	1	124	118	118	1207	1223	0	58	1469	
					2	124	118	118	1215	1215	-1	58	1474	
8	NNNNNN	1.987 .768		31.70	1	125	116	118	1265	1177	0	53	1462	
					2	127	117	116	1236	1222	4	54	1484	
					3	122	119	119	1228	1266	-3	54	1403	
					4	122	119	119	1266	1228	3	54	1403	
					5	127	116	117	1222	1236	-4	54	1484	
~		1 004 001	10.00	00 00	5	125	118	110	1177	1265	0	53	1402	
9	N M	1.284 .691	18.90	20.23	1	123	118	119	1210	1211	-0	3	14//	
10	NMMMMM	1.3/8.715		18.75	1	124	117	117	1104	1101	1	3	1400	
11	NMMMM	1.221 .724		22.90	1	120	110	110	1104	1200	-1 1	00	1400	
12					2	122	190	120	1100	1100	0	90 00	1400	
					3 11	141	110	110	1210	1210	ň	90 00	1470	
					3, 1	120	110	110	1100	1100	ň	90	1480	
13	NNN	1 675 720	25 65	24 65	1	120	118	115	1241	1211	7	3	1493	
10		1.075 .720	20.00	24.00	3	125	117	118	1217	1179	-3	29	1475	
					5	125	117	118	1203	1194	-11	7	1470	
					1'	122	120	118	1205	1189	1	6	1442	
					3'	124	118	118	1199	1230	1	9	1480	
					5'	127	116	117	1229	1189	-3	10	1500	
14	NMN NM	1.632.757	31.02	31.03	1	125	117	117	1212	1212	0	75	1480	
					3	125	118	117	1223	1220	-10	36	1475	
				1	5	125	117	118	1220	1223	10	36	1475	
15	NN	1.571.728	20.8	23.80	1	126	117	117	1223	1241	-14	42	1472	
				:	2	125	118	117	1222	1223	11	42	1470	
16	N N NM	1.653.741	27.06	28.25	1	124	120	116	1217	1252	5	45	1449	
				:	3	122	119	119	1195	1215	6	23	1443	
				ł	5	122	119	118	1214	1210	5	52	1496	
					1′	125	116	118	1236	1179	11	42	1494	
				;	3′	125	119	117	1214	1232	-1	33	1482	
					5′	126	117	116	1177	1232	-8	60	1459	
17	NANANV	1.887 .799			1	120	119	121	1228	<u>1233</u>	-29	20	1436	
				:	3	118	121	120	<u>1234</u>	<u>1241</u>	22	9	1421	1331
				ļ	5	122	120	118	<u>1238</u>	1222	30	39	1455	1321
18	NANANF	1.944 .810		60.6	1	122	119	119	1229	<u>1230</u>	0	17	1464	1315
				:	3	118	122	120	<u>1233</u>	<u>1237</u>	-11	5	1433	1319
					5	122	119	119	1230	1217	3	23	1456	

Table 2. Conformation of Nitro Group and Packing Properties [§]

Tab	le	2	(cc	nt	inuc	d)														
NO.	G	to	up	s				Dx	Ск	∆Но	∆Hc	Po	β	γ	Υľ	đ	ď.	h _N	τ	dan	RCN
19	N	ſ	U	1		В	1	. 845	. 726			1	116	126	119	1144	1129	-6	4	1438	1362
20	N	ſ	С	Å			1	. 561	. 720			1	123	119	118	1235	1235	-7	4	1466	1381
21	N	A	N	I			1	. 627	. 753			1	121	119	120	1210	1222	: -2	5	1459	1339
												3	121	120	119	1227	1220	-1	9	1452	
22	N	A	N	A	N		1	. 837	. 801	34.30	32.67	7 1	127	118	116	1177	1235	8	5	1514	1323
												3	117	122	121	1262	1242	-4	4	1415	1317
												5	120	119	121	1259	1223	1	5	1433	
23	N			S			1	354	747	24 55	24 70	۱ ۱	121	120	119	1201	1262		Š	1300	1359
24	N	x		~			1	436	737	21.00	24.11	1	122	112	120	1201	1202	0	10	1/50	1305
25	N		N	w			1	756	737			1	194	117	110	1991	1207		15	1400	1000
20												2	104	110	110	1201	1999	. 7	27	1400	1/67
												1,	110	199	110	12/1	1202	, í	21	1407	1407
												2,	126	120	117	1240	1210	2	26	14/0	1461
26	N		N		N	w	1	901	766			1	120	117	116	1210	1000	9	62	1400	1401
20	•		••									3	120	117	118	1219	1222	6	28	1430	
												5	120	116	117	1220	1217	5	20	1470	1460
27	N	м	N	S			1	442	739			1	120	112	110	1220	1220		10	1450	1400
			••	Ũ			1					3	120	110	118	1221	1220	-13	66	1468	1360
28	N		ĸ		N	U	1	712	731			ĩ	121	119	120	1245	1220	-7	6	1434	1000
						-	Î					5	126	117	117	1274	1220	-28	50	1455	1399
												1'	120	110	110	1229	1216	20	ູ ຊ	1400	1022
												5,	121	110	117	1207	1210	22	52	1420	1220
29	N		F	S			1	451	741			1	124	110	120	1214	1224	20	202	1437	1244
30	N		м	š	м		1	220	699			1	122	110	110	1201	1210	0	0 0	1465	1399
31	N			n			1	367	726			1	120	120	119	1221	1241	4	2	1400	1252
32	N		N	Ŭ	N	R	1	773	775			1	122	110	110	1220	1291	е О	12	1400	1990
02						n	,					2	120	110	110	1200	1000	_1	12	1452	
												о Б	120	119	110	1224	1200	-20	9	1449	1221
												0 1'	124	110	110	1226	1220	29	00	1472	1991
												3,	19/	110	110	1000	1000	_7	7	1440	
												5'	124	110	110	1220	1222	34	50	1407	1325
33	N	н	N	м	R		1	843	737			1	120	110	110	1210	1107	34 0	60	1470	1330
00	•	U			2		1	. 040				3	122	115	110	1203	1244	-10	72	1420	1920
34	N	Y			м		1	132	722			1	120	117	110	1219	1244	-10	13	1400	1 4 1 0
35	N	^	٨		101		1	125	734	92 11	17 22	1	124	110	110	1201	1200	-10	44	1400	1900
36	N	м	~		п		1	320	799	20.11	17.00	1	122	110	140	1016	1016	_1	12	1407	1092
37	N		s		v		1	286	714	22 16	22 52	1	102	110	110	1040	1210	-1	10	14/4	1404
38	N		N		N	Y	1	730	711	31 08	20.00	1	122	110	117	1240	1209	-12	26	1492	1404
00	•					•				51.50	51.70	2	120	117	110	1010	1202	_10	20 00	1400	
												0 5	120	116	117	1210	1210	0 10	20	1400	1/10
39	N			٨			1	425	720	24 00	10 87	1	127	110	110	1210	1210	-2	40	1457	1419
40	N	A		~			1	117	7/2	24.03	10.35	1	120	110	119	1227	1223	6	2 2 1	1404	1000
10		'n					1.	747	. / 42	21.00	15.00	1,	120	114	120	1210	1240	_1	4 1	400 1	250
41	N		м				1	696	751			1	121	110	141	1220	1210	-1	4 1	440 1	390
41	п		I	^			1.	020	. 751			1	120	110	118	1213	1219	4	1	1480	1050
49	N	м		c		M	1	000	700			3	121	119	120	1220	1250	-5	4	1442	1352
46 12	IN N	171 A	N	3	N	171. A	1.	200	. 120	12 C	97 59	1	118	119	123	1225	1203	5	ວປ	1402	1301
40	n,	л	14	n	tu.	л	1.	990	. 040	43.0	31.33	1	110	121	121	1230	1243	-8	3	1417	1308
												3	118	121	121	1246	1239	1	3	1417	1319
	••				••				-			5	117	121	121	1243	1260	7	1	1422	1331
44	N		N		N	A	1.	772	. 768	29.95	28.74	1	124	119	117	1219	1215	6	22	1475	
												3	125	118	118	1224	1222	-3	4	1469	
												5	122	119	119	1202	1230	5	9	1463	1340

Tab	le 2	(cc	mt	inuc	:d)																
NO.	Gto	uns			- /	D.	C.	Λ	Но	Λ	Hc	Po	6	v	v •	đ	۹.	h.,	+	da.	R
45	NA	N N		i	1	859	767			-		1	124	118	119	1222	1214	3	·,	1461	1312
					-							3	124	110	117	1917	1219	10	45	1467	1012
												3	100	110	110	1011	1210	10	40	1407	
												4	120	110	110	1211	1207	ð nn	10	1480	
46	N	•			1	E79	773			20	67	0	100	110	110	1221	1228	-22	19	1447	1 400
40	N A		1 1	•	1	000	. //3	•		20	. 67	1	123	118	119	1228	1221	-5	3	1401	1403
47	N A	IN A		U	1	. 009	. 809					1	118	119	123	12/6	1240	18	14	1409	1320
												3	120	120	120	1247	1248	-7	10	1423	1313
												5	124	118	118	<u>1237</u>	1209	22	55	1462	
48	N	NC	B		2	. 052	. 713			24	. 60	1	122	119	119	1231	1218	-3	9	1450	
												3	124	118	118	1206	<u>1217</u>	1	5	1477	
49	N	P	Ν	Т	1	. 357	. 713			30	. 61	1	112	116	132	1225	1193	15	68	1482	
												5	125	118	117	1220	1218	16	63	1490	
50	N	NO	C		1	. 754	. 730			23	. 72	1	124	118	118	1210	1219	0	4	1472	
												3	123	119	118	1198	1235	-1	5	1464	
51	N	NO)		1	. 667	.750	25	. 00	23	. 03	1	124	118	118	1219	1218	-3	5	1484	
					-							3	123	119	118	1221	1237	-1	3	1449	
52	NO	N			1	704	767	26	79	25	46	1	122	119	118	1215	1242	6	3	1457	
		••			1			20			. 10	ż	122	110	117	1210	1292	-2	12	1473	
53	N	ם א	,		1	559	790					1	120	117	110	1010	1221	2	10	14/5	
55	14	o I			1	. 002	. 720					2	124	117	110	1212	1211	2	22	1407	
												0	124	117	110	1010	1100	ა ა	20	1470	
												1	124	11/	110	1213	1210	1	22	14/0	
r 4	N D	ы				r 7r	790					3	123	114	121	12/1	1200	1	53	1404	
34	NP	N			1	. 5/5	. 738					1	124	120	110	1201	1229	-2	50	1404	
												3	123	122	110	1188	1210	12	13	1493	
												ľ	124	116	120	1214	1208	10	13	1495	
			_									3	124	119	118	1200	1221	-2	58	1486	
55	NO		P		1	. 495	.744			24.	. 83	1	121	121	117	1205	1256	0	4	1454	
56	N	0			1	. 476	. 728	21	. 89	16.	. 60	1	123	118	119	1228	1207	-1	1	1474	
57	N	0			1	. 490	. 739	23	. 61	15.	. 73	1	123	119	119	1244	1241	4	7	1450	
58	ΝO		С		1	. 674	. 741			21.	. 59	1	122	119	119	1199	<u>1240</u>	0	1	1442	
59	NO				1	. 492	. 734	17	. 50	21.	. 43	1	124	119	118	1204	1234	-2	2	1457	
60	N	N	N	0	1	. 771	.745	25	. 12	27.	20	1	121	120	119	1202	1182	-2	18	1478	
												3	124	118	118	1218	1214	2	1	1455	
												5	122	119	119	1201	1227	-1	7	1456	
												1'	122	121	118	1196	1185	7	20	1464	
												3'	124	118	117	1211	1214	2	6	1466	
												5'	122	120	118	1202	1232	ō	2	1449	
61	N	Р			1	135	749			21	AQ	ĭ	122	120	118	1229	1235	Ō	7	1450	
62	NM	ND	т		1	202	609	24	60	20	00	1	192	117	110	1220	1102	Ă	40	1475	
02	14 M	0 I	1		1	, 000	. 030	24	. 03	23.	00	3	120	112	119	1211	1100	17	83	1481	
62	N	N	м	^	1	667	700	20	90	20	00	ວ 1	124	110	110	1211	1724	_9	22	1463	
03	N	14	14	V.	1	. 557	. 709	20	. 00	20.	00	2	124	110	110	1000	1204	0	52 A	1467	
												0 E	124	110	110	1100	1210	0 _C	4	1407	
C 1	N	N 0				700	700			00	00	5	124	110	110	1004	1200	10	12	14/0	
04	N	NC			1	. 799	. 708			22.	80	1	120	110	117	1624	1220	12	10	1400	
6 5	N T	в				070	700			05	0 1	3	120	11/	100	1243	1220	-3	40	14/0	
00	N	В			1.	. 97Z	. 729			Z5.	31	1	115	123	123	1212	122/	-1	3	1400	
00	N	C C			1.	. 683	.704	• **		ZU.	95	1	125	119	110	1198	1228	-4	9	1460	
67	N	C		-	1	. 576	.721	17.	. 85	20.	ZZ	I	124	118	118	1225	1222	Z	న	1481	
68	N	N	N	С	1	. 772	. 717	24.	8	25.	23	1	125	117	118	1201	1223	3	SZ	1498	
												3	125	118	117	1225	1227	2	12	1471	
												5	122	118	120	1176	1188	-3	81	1493	

Tab	le 2	()	con	tinu	ed)													
No.	Grou	ups	5		Dx	Ск	∆Ho	∆Hc I	20	β	Y	γ *	d	d°	hN	τ	dcN	RCN
69	NC	N	C !	4	1.932	.741		27.31	1	125	117	118	1217	1224	-5	37	1467	
									3	125	117	117	1206	1206	0	75	1447	
									5	125	118	117	1224	1217	5	37	1467	
70	NN		С		1.670	.711		22.87	1	125	117	117	1220	1230	11	38	1470	
									2	125	118	117	1210	1225	-12	46	1481	
71	NC	С			1.715	.717		21.07	1	124	117	119	1209	1208	0	53	1471	
72	NC	Ň	С	С	1.827	690		24, 11	1	126	117	117	1209	1203	1	87	1472	
		-	-	-					3	125	117	118	1212	1200	Ō	80	1472	
73	N	N	,	T	2 300	716		29 16	ĩ	132	117	111	1196	1221	Õ	82	1452	
	••	•••	•	• •	2.000			20.10	3	119	121	121	1167	1167	Ő	0	1342	
									5	132	111	117	1221	1196	ň	82	1452	
71	NC	c	N	ר ר	1 030	703		23 25	1	125	112	118	1209	1211	-1	90	1475	
	n c	Č			1.303	. 705		20.20	Å	125	118	118	1211	1200	1	an	1475	
75	N		G		1 401	745		21 62	1	120	110	110	1272	1213	-1	20	1460	
76	N		ı.		1 409	.740		21.00	1	122	110	110	1220	1210	-2	1	1466	
77	N		2		1.402	- 724		20.71	1	101	110	120	1220	1220	4	5	1400	
11	N		Y.		1. 372	. 7 30		20.10	1	121	110	117	1201	1229		10	1447	
70	N		٦.		1.424	. / 14		21.03	1	144	119	117	1219	1204	10	10	1400	
79	N	N	C	V K	1.939	.703			1	120	110	117	1223	1218	12	50	1479	
									3	127	117	117	1209	1200	-7	15	1490	
									5	126	117	117	1213	1209	8	46	1477	
For	Grou	m		e t	able 1	For I	y(g/c	³).Ck.	. ^ F	lo(ko	a1/1	nol).	. ∧Hc	(kcal	/#01) <	ee th	1e

§ For Groups see tabl For oroups see table 1. For β (°), γ (°), γ (°), d (0.001Å), d (0.001Å), τ (°) see the last section in text. For β (°), γ (°), γ (°), γ (°), d (0.001Å), d (0.001Å), τ (°) see Fig. 1. For $Po_1h_N(0,01\dot{A})$, $d_{CN}(0,001\dot{A})$, $R_{CN}(0,001\dot{A})$ see the third section.

ď* d 0. .0 β N **۲*** γ τ 1 2 3

Fig. 1. Conformation of NO₂ Group

Statistics from table 2 ave. r.m.s. max. min. samples

	2.49	2.05	7.88	0.01	26	
	1465	25	1514	1399	175	
10.001A) h _N	6	6	· 34	0	175	
(U. UIA) β	123	3	132	112	175	
(°) y - y •	1	2	16	0	175	
(*) d - d*	13	16	88	0	175	
$(0.001A)$ R_{CN} $(0.001\dot{A})$	1361	44	1467	1312	42	
(U. UUIA)						

the benzene ring plane, representing the out-of-plane deviation of the whole NO₂ group. Large values of h_N up to 0.3 Å were observed when the number of substituents becomes larger and/or the substituent group becomes bigger.

The twist angle τ formed by NO₂ group and benzene ring represents another type of deviation (by rotation). It is also caused by the repulsion, as shown by the data below. The avearage values of τ respectively are 8.30°, 29.76° and 56.44° for the cases of No =0, 1 and 2, No being the number of substituents ortho to the NO₂ group. However, intramolecular hydrogen bonding formed by NO₂ group and amine or phenolic group greatly reduces the rotation of NO₂ group and thus improves the planarity of the molecule. The corresponding data in this case are 7.08° (No=1) and 18.14° (No=2).

As shown by the statistics appended at the bottom of the table, d_{CN} is signicantly larger than R_{CN} . The d_{CN} is the bond length between the N atom in NO₂ and its attached C atom. The R_{CN} is the counterpart for amine group. According to the above statistics of the α , d_{CN} and R_{CN} , the electron-withdrawing group NO₂ seems push its attached C atom towards the ring center, making the α and the d_{CN} larger, while the electron-releasing group amine has the opposite behaviour. It is explained by the hyperconjugation of benzene ring with the lone pair of p-type being more effective than SP²-type^{2,3}.

SOME PACKING PROPERTIES

Molecular packing analysis was performed on the database by using Gavezzotti's program OPEC⁴(Organic Packing and Energy Calculation). Only D_x (in g/cm³), C_κ and PE (in kcal/mol) were listed in this paper. The D_x is the crystal density measured by X-ray diffraction. The Kitaigorodsky's Packing Coefficient⁵ C_κ is the ratio of the actual volume occupied by the molecules in crystal to the total crystal volume. The molecular volume was calculated by assuming that the molecule consists of spherical atoms having so-called Van Der Waals radii (H 1.20 Å, C 1.70 Å, N 1.55 Å, O 1.52 Å, F 1.47 Å, C1 1.75 Å, Br 1.85 Å and I 1.98 Å)⁶.

The packing energy PE ($-\Delta H_{sub,e}$) was calculated by the atom-atom potential method as usual⁵, with the parameters recently revised by Gavezzotti and Filippinni⁷. The PE is the gain of energy when packing 1 mole molecules in gas phase into crystal state, that is, the negative of the sublimation heat (ΔH_{sub}). It is a measure of strength of intermolecular interaction in the crystal, and thus, has important effect on some crystal properties, for example, the vapour pressure, lattice vibration, possible phase transition and thermodynamic properties. For 26 compounds, whose experimental $\Delta H_{sub,0}$ were available⁸, the average error for the calculated values, $|\Delta H_{sub,0}$ - $\Delta H_{sub,c}$ | is 2.49 kcal/mol, which is comparable with experi-

mental error, showing that the parameters is generally excellent⁷. However, larger errors were observed, mostly in structures involving intermolecular hydrogen bonding. At present, hydrogen bonding energy was calculated by using same function form(6-exp) with specially derived parameters. In this respect, further improvement in parameters or function form⁹ might be desired. Since the experiment measuring ΔH_{sub} on explosives is not easy and the available data are rare, the calculation method is a very good alternative.

ACKNOWLEDGEMENT

This work was supported by the Chinese National Natural Science Foundation. Thanks are due to prof. A. Gavezzotti of University Milano for the use of program OPEC, and the people at Computer Center of this University for the use of computer.

REFERENCES

- 1. A. Domennicano and A. Vaciago, Acta Crystal. B31, 1382(1979)
- M. L. Verdonk, R. W. Tjerkstra, I. S. Ridder, J. A. Kanters, J. Kroon and W. J. M. Van Der Kemp, J. Comput. Chem. 15(12), 1429(1994)
- L. Radom, W. J. Hehre, J. A. Pople, G. L. Carlson and W. G. Fateley, J. Chem. Soc., Chem. Commun., 308(1972)
- 4. A. Gavezzotti, J. Am. Chem. Soc. 105, 5220(1983)
- 5. A. I. Kitaigorodsky, "Molecular Crystals and Molecules", Academic Press, New York, 1973
- 6. A. Bondi, J. Phys. Chem. 68(3), 441(1964)
- 7. A.Gaverzzotti and G.Filippini, J.Phys.Chem. 98(18), 4831(1994)
- J.S.Chickos, In Molecular Structure and Energetics, Vol. 2 J.F.Liebman & A.Greenberg Eds.; VCH: New York(1987)
- 9. A. vedani & J. D. Dunitz, J. Am. Chem. Soc., 107, 7653-8(1985)

References to structures in tables 1 and 2 with the same numbering

- 1 A. Mugnoli, D. spinelli, G. Consiglio and R. noto, Cryst. Struct. Commun., 1981, 10, 983
- 2 J.P. Henichart, J.L. Bernier, C. Vaccher, R. Houssin, V. Warin and F. Baert, Tetrahedron, 1980, 36, 3535
- 3 J. Trotter and C.S. Williston, Acta Cryst., 1966, 21, 285
- 4 F.di Rienzo, A. Domenicano and L. Riva di Sanseverino, Acta Cryst., 1985, B36, 586
- 5 K. Padmanabhan, D. Dopp, K. Venkatesan and V. Ramamurthy, J. Chem. Soc., Perkin Trans. 2 1986, 897
- 6 K. Padmanabhan, V. Ramamurthy, K. Venkatesan, M. N. Ponnuswamy and J. Trotter, Acta Cryst., 1986, C42, 610
- 7 P. Sgarabotto, F. Ugozzoli and S. sorriso, J. Cryst. Spectrosc., 1989, 19, 905
- 8 Z.A. Akopyan, Yu. T. Struchkov and V.G. Dashevii, Zh. Strukt. Khim., 1966, 7, 408
- 9 J.V. Barve, and L.M. Pant, Acta Cryst., 1971, B27, 1158
- 10 J.Trotter, Acta Cryst., 1959, 12, 884
- 11 Yu. V. Gatilov, N. G. Bokii and Yu. T. Struchkov, Zh. Strukt. Khim. 1975, 16, 702
- 12 O. Ori, P. Sgarabotto, F. Ugozzoli and S. Sorriso, J. Cryst. Spectrosc. 1989, 19, 341
- 13 C.S.Choi and J.E.Abel, Acta Cryst., 1972, B28, 193
- 14 J.H. Bryden, Acta Cryst., 1972, B28, 1395
- 15 F.H.Her bstein and M.kapon, Acta Cryst., 1990, B46, 567
- 16 W.R.Carper, L.P. Davis and M.W. Extine, J. Phys. Chem., 1982, 86, 459
- 17 H.L.Ammon, Acta Cryst., 1982, B38, 2083
- 18 H.L. Ammon, S.K. Bhattcharjee and J.R. Holden, Acta Cryst., 1982, B38, 1851
- 19 A. ChiaroniS, Acta Cryst., 1971, B27, 448
- 20 A.T. McPhail and G.A.Sim, J.Chem.Soc., 1965, 227
- 21 L. Parkanyi and A. Kalman, J. Mol. Struct, 1984, 125, 315
- 22 J.R.Holden, Acta Cryst., 1967, 22, 545
- 23 T.C.W.Mak and J.Trotter, Acta Cryst., 1965, 18, 68
- 24 S.Kashino, T. Matsushita, T. Iwamoto, K. Yamaguchi, and M. Haisa, Acta Cryst., 1986, C42, 457
- 25 P. Batail, M. Louer, D. Grandjean, F. Dudragne and C. Michaud, Acta Cryst., 1976, B32, 2780
- 26 P. Batail, M. Louer and D. Grandjean Acta Cryst., 1975, B31, 1367
- 27 J.K.Maurin and T.M.Krygowski, Acta Cryst., 1987, C43, 64
- 28 J.N. Brown and R.L.R. Towns, Acta Cryst., 1977, B33, 149
- 29 P.J.Cox, A.D.U. Hardy, R.K. Mackenzie and D.D. MacNicol, J. Chem. Res., 1977, 292, 3341
- 30 J. Maurin and T. M. Krygowski, J. Mol. Struct, 1987, 158, 359
- 31 T. W. Panunto, Z. Urbanczyk-Lipkowskw, R. Johnson and M. C. Etter, J. Am. Chem. Soc., 1987, 109, 7786
- 32 J.Flippen-Anderson and D.S.Dudis, Acta Cryst., 1989, C45, 1107
- 33 S. Abrahamsso, M. Innes and B. Lamm, Acta Chem. Stand., 1967, 21, 224
- 34 J.C. Moore, A. Yeadon and R.A. Palmer, J. Cryst. Spectrosc. 1983, 13, 279
- 35 G. Ploug-Sorensen and E.K. Andersen, Acta Cryst., 1986, C42, 1813
- 36 A.Chiaroni, Acta Cryst., 1971, B27, 448
- 37 Y. Delugeard and J. C. Messager, Acta Cryst., 1975, B31, 2809
- 36 H.H.Cady, Acta Cryst., 1967, 23, 601
- 39 K.N.Trucblood, E.Goldish and J.Donohuc, Acta Cryst., 1961, 14, 1009
- 40 N.N. Dhaneshwar, S. S. Tavalc and L. M. Pant, Acta Cryst., 1978, B34, 2507
- 41 L. Prasad, E. J. Gabe and Y. Le Page, Acta Cryst., 1982, B38, 674

- 42 T.M. Krygowski and J. Maurin, J. Chem. Soc., Perkin Trans. 2 1989, 695
- 43 H.H.Cady and A.Clarson, Acta Cryst., 1965, 18, 485
- 44 J.R. Holdon, C. Dickinson and C. M. Bock, J. Phys. Chem. 1972, 76, 3597
- 45 C. Dickinson, J. M. Stewart and J. R. Holden, Acta Cryst., 1966, 21, 663
- 46 M. Haisa, S. Kashino and T. Kawashima, Acta Cryst. 1980, B36, 1598
- 47 S.K. Bhattacharjee and H.L. Ammon, Acta Cryst, 1981, B37, 2082
- 48 R. J. Neustadt and F. W. Cagle junior Acta Cryst. 1975, B31, 2727
- 49 W. van Havere, A. T. H. Lenstra and H. J. Geise, Acta Cryst., 1982, B38, 3119
- 50 E.K. Anderson and J.G.K. Anderson, Acta Cryst. 1975, B31, 387
- 51 F. Iwasaki and Y. Kawano, Acta Cryst. 1977, B33, 2455
- 52 F. Iwasaki and M. Saito, A. Aihara, Acta Cryst. 1976, B32, 102
- 53 S.C.Nyburg, C.H.Faerman, L. Prasad, D. Palleros and N. Nudelman, Acta Cryst., 1987, C43, 686
- 54 S. C. Nyburg, C. H. Faerman, L. Prasad, D. Palleros and N. Nudelman, Acta Cryst., 1987, C43, 686
- 55 Z. V. Todres, G. Ts. Ovsepyan, A. Yu. Kosnikov, S. V. Lindeman and Yu. T. Struchdov, Zh. Org. Khim., 1988, 24, 2567
- 56 F. Pandarese, L. Ungaretti and A. Coda, Acta Cryst., 1975, B31, 2671
- 57 P. Coppens and G.M.J. Schmidt, Acta Cryst., 1965, 18, 654
- 58 R.Kawai, S.Kashino and M.Haisa, Acta Cryst., 1976, B32, 1972
- 59 F. Iwasaki and Y. Kawano, Acta Cryst., 1978, B34, 1286
- 60 E.N. Ducsler, J.H. Engelmann, D.Y. Curtin and I.C. Paul, Cryst. Struct. Commun., 1978, 7, 449
- 61 H. J. Talberg, Acta Chem. Stand. Scr. A, 1978, 32, 373
- 62 D.J.A. De Ridder, K. Goubitz and H. Schenk, Acta Cryst. 1990, C46, 468
- 63 C.M. Gramaccioli, R. Destro and M. Simonetta, Acta Cryst. 1968, B24, 129
- 64 H. Takazawa, S. ohba and Y. Saito, Acta Cryst., 1989, B45, 432
- 65 T.L. Chariton and J. Trotter, Acta Cryst., 1963, 16, 313
- 66 S. Kumakuta and Y. Kutoishi, Bull Chem. Soc. Jod 1983, 56, 154
- 67 S. Sharma, H. Paulus, N. Weiden and A. Weiss, Z. Kristallogr., 1985, 171, 101
- 68 J.S.Willis, J.M. Stewart, H.L. Ammon, H.S. Preston, R.E. Gluyas and P.M. Harris, Acta Cryst., 1971, B27, 786
- 69 J.R. Holdon and C. Dickinson, J. Phys. Chem., 1967, 71, 1127
- 70 A. Wilkins and R. W. H. Small, Acta Cryst., 1985, C41, 1509
- 71 S. Sharma, H. Paulus, N. Weiden and A. Weiss, Z. Naturforsch., Teil A 1986, 41, 134
- 72 S. Wigand, L. Walz, N. Weiden and A. Weiss, Ber. Bunsenges. Phys. Chem., 1987, 91, 1189
- 73 G. Huse and H. M. Powell, J. Chem. Soc. him., 1940, 1398
- 74 S. Wigand, L. Walz, N. Weiden and A. Weiss, Ber. Bunsenges. Phys. Chem., 1987, 91, 1189
- 75 M.A. Jackisch, F.R. Fronczek and L.G. Butler, Acta Cryst., 1989, C45, 2016
- 76 J.K.S.Kim, E.R. Boyko and G.B. Carpenter, Acta Cryst., 1973, B29, 1141
- 77 A. Mugnoli, C. Mariani and M. Simonetta, Acta Cryst., 1965, 19, 367
- 78 T.Higashi and K.Osaki, Acta Cryst., 1977, B33, 2337
- 79 A. L. Rheingold, C. J. Baldacchini and C. W. Grote, J. Cryst. Spectrosc. 1989, 19, 25